
Contents

Application Note
Application Note

Document No.: AN1088

APM32F4xx Series ETH Transplantation LWIP

Application Note

Version: V1.0

Document No.: AN1088

www.geehy.com Page 1

1 Introduction

This application note provides a guide to how to configure and apply ETH peripherals on EVAL Board

of APM32F4xx series, including transplantation of lwip protocol stack, code implementation and

application methods.

APM32F4xx MCU provides configurable and flexible Ethernet peripherals to meet various application

requirements of customers. It supports two industry standard interfaces connected to the external

physical layer: MII and RMI used by default, and MII is only defined in IEEE 802.3 specification. It has

many application fields, such as switch, network interface card and so on. Ethernet can transmit and

receive data according to IEEE 802.3-2002 standard with the help of peripherals.

Ethernet complies with the following standards:

IEEE802.3-2002 for Ethernet MAC

IEEE1588-2008 standards which specify synchronization precision of networked clock

AMBA 2.0 for AHB master/slave ports

RMII specification of RMII Alliance

http://www.geehy.com/

Document No.: AN1088

www.geehy.com Page 2

Contents

1 Introduction ... 1

2 Introduction to Development Environment .. 3

2.1 Introduction to Ethernet .. 3

2.2 ETH peripherals of APM32 ... 4

2.3 Hardware design ... 6

3 Transplant LwIP .. 7

3.1 PHY underlying driver ... 7

3.2 Add LwIP source file ... 8

3.3 Transplant header files ... 8

3.4 Transplant network card driver files .. 10

3.5 Initialize protocol stack ... 11

3.6 Configure LwIP time base ... 12

3.7 Acquisition of data packets ... 12

3.8 Experimental phenomena ... 12

4 Revision History ... 13

http://www.geehy.com/

Document No.: AN1088

www.geehy.com Page 3

2 Introduction to Development Environment

This chapter mainly introduces Ethernet, ETH peripherals of APM32F407 and EVAL board related

hardware design.

2.1 Introduction to Ethernet

Ethernet is a kind of computer LAN technology, which complies with IEEE 802.3 standard. IEEE 802.3

specifies the content of connection, electronic signal and media access layer protocol of physical layer.

It has many application fields, such as switch, network interface card and so on.

2.1.1 Physical layer

In the physical layer, the IEEE 802.3 standard specifies the transmission media, transmission speed,

data coding method and conflict detection mechanism used by Ethernet. In the actual development

process, the physical layer generally implements the function of the physical layer through a PHY chip.

The development board we use in this application is APM32F407 EVAL board, and the on-board PHY

chip is LAN8720A, which is a small, low-power Ethernet physical layer transceiver, and only supports

RMII interface.

2.1.2 MAC sublayer

APM32F407/417xExG series product internally integrates media access control (MAC 802.3),

completes the functions of MAC sublayer, and is responsible for data handover with the physical layer.

2.1.3 TCP/IP protocol stack

TCP/IP is a data communication mechanism. The implementation of the protocol stack is essentially to

process data packets. LwIP data packet management provides an efficient processing mechanism.

2.1.3.1 Introduction to LwIP

LwIP is a lightweight TCP/IP protocol, and a small open-source TCP/IP protocol stack developed by

AdamDunkels of the Swedish Institute of Computer Science (SICS). The occupation of resources is

reduced while the main functions of TCP protocol are maintained. In addition, LwIP can be ported to

the operating system and run independently without an operating system. The source code packet of

each version of LwIP and the corresponding contrib packet can be downloaded and obtained on the

web page http://savannah.nongnu.org/projects/lwip/. The version used in the routine is lwip-1.4.1.

2.1.3.2 Main features of LwIP

1. Support ARP protocol (Ethernet Address Resolution Protocol).

2. Support ICMP Protocol (Internet Control Message Protocol) for network debugging and

maintenance.

http://www.geehy.com/

Document No.: AN1088

www.geehy.com Page 4

3. Support IGMP protocol (Internet Group Management Protocol), which can implement receiving of

multicast data.

4. Support UDP protocol (User Datagram Protocol).

5. Support TCP protocol (Transmission Control Protocol), including congestion control, RTT estimation,

fast recovery and fast forwarding.

6. Support PPP protocol (Point-to-point Protocol) and PPPoE.

7. Support DNS (Domain Name Resolution).

8. Support DHCP protocol and dynamically allocate IP addresses.

9. Support IP protocols, including IPv4 and IPv6 protocols, support IP fragmentation and reassembly

functions, and forwarding of data packets under multiple network interfaces.

10. Support SNMP protocol (Simple Network Management Protocol).

11. Support AUTOIP and automatic IP address configuration.

12. Provide a special internal callback interface (Raw API) to improve application program performance.

13. Provide optional Socket API and NETCONN API (used in multithreaded scenarios).

2.1.3.3 Programming interface of LwIP

LwIP provides three programming interfaces, namely, RAW/Callback API, NETCONN API and SOCKET

API. SOCKET API has the highest usability and the lowest execution efficiency, while RAW/Callback API

has the lowest usability and the highest execution efficiency. Users need to choose according to the

actual situation.

2.2 ETH peripherals of APM32

Ethernet peripherals include MAC 802.3 with dedicated DMA controller. It supports MII and RMII used by

default and switches them through select bit. It also includes SMI for communicating with external PHY.

The mode and function of MAC controller and DMA controller can be selected through a configuration

register.

When transmitting data, first transmit the data from the system memory to the TX FIFO buffer through

DMA, and then transmit it through the MAC core. The Ethernet frame received through the line is stored

by RX FIFO before it is transmitted to the system memory through DMA.

2.2.1 Station management interface (SMI)

SMI supports accessing 32 PHY. The application program selects one PHY among the 32 PHY through

the 2-wire clock and data line, and then accesses any PHY register. Only one register in one PHY can

be addressed at any given time.

SMI write operation: When MB bit and MW bit of MAC_ADDR are set to 1 by application program, SMI

will trigger write operation of PHY register by transmitting PHY address, and register address in PHY,

and writing data. When performing write operation, the application program cannot modify MAC_ADDR

and MAC_DATA registers. After write operation is completed, SMI will reset MB bit.

http://www.geehy.com/

Document No.: AN1088

www.geehy.com Page 5

SMI read operation: When MB bit of MAC_ADDR is set and MW bit is cleared to zero, SMI will trigger

read operation of PHY register by transmitting PHY address, and register address in PHY. When

performing read operation, the application program cannot modify MAC_ADDR and MAC_DATA

registers. After read operation is completed, SMI will reset MB bit, and update the read data from PHY to

MAC_DATA register.

2.2.2 Media independent interface (MII)

MII defines the interconnection between MAC sublayer and PHY at data transmission rate of 10Mbit/s

and 100Mbit/s. The signals are as follows:

MII_TX_EN: Transmit enable signal; MAC is currently transmitting half byte for MII

MII_RX_DV: Data receiving effective signal; PHY is currently receiving recovered and decoded half byte

of MII

MII_TXD [3:0]: Data transmitting signal

MII_RXD [3:0]: Data receiving signal

MII_RX_ER: Receiving error signal

MII_TX_CLK: Continuous clock signal, providing reference timing for TX data transmission

MII_RX_CLK: Continuous clock signal, providing reference timing for RX data transmission

MII_CRS: Carrier sense signal

MII_COL: Conflict detection signal

MII clock source: 25MHz clock must be provided to external PHY to generate TX_CLK and RX_CLK

clock signal; this signal is output through MCO pin. The required frequency can be obtained on MCO pin

through 25 MHz external quartz crystal only when PLL frequency multiplier is configured.

2.2.3 Reduced media independent interface (RMII)

RMII reduces the number of pins of MCU of Ethernet peripherals and external PHY at 10/100Mbit/s.

According to IEEE 802.3u standard, MII has 16 data and control signal pins. RMII reduces the number of

pins to 7.

RMII is instantiated between MAC and PHY. It is conductive to converting MII of MAC to RMII. RMII has

the following characteristics:

Separate 2-bit wide transmitting and receiving data path

10-Mbit/s and 100-Mbit/s running speed

The reference clock is 50MHz

Provide the same reference clock to MAC and external Ethernet PHY from the outside

RMII clock source: Use external 50MHz clock or embedded PLL to generate 50MHz-frequency signal to

drive PHY.

http://www.geehy.com/

Document No.: AN1088

www.geehy.com Page 6

2.3 Hardware design

The development board uses APM32F407 controller to connect to LAN8720A Ethernet PHY through

RMII interface and SMI interface.

Figure 1 LAN8720A Hardware Circuit

Set the nINTSEL pin to low level by connecting the pull-down resistor, to enable the output function of

nINT/REFCLKO pin to provide clock signal for REF_CLK signal line in RMII interface; connect

between XTAL1 and XTAL2 on the hardware to provide 25MHz clock; after the frequency doubling of

LAN8720A internal PLL circuit, the output clock signal of nINT/REFCLKO pin is 50MHz clock.

http://www.geehy.com/

Document No.: AN1088

www.geehy.com Page 7

3 Transplant LwIP

This chapter mainly introduces how to transplant LwIP to APM32F407 bare metal project without

operating system, and shows the experimental demonstration of ping instruction.

3.1 PHY underlying driver

Because there are no files related to ETH peripheral in the standard library, you need to first add the

ETH driver library files apm32f4xx_eth.c and apm32f4xx_eth.h in the bare metal project to implement

ETH drive.

Figure 2 Add Driver Library

Create new underlying driver files board_LAN8720A.c and board_LAN8720A.h to realize the PHY

related drive, initialize the GPIO of RMII interface used by Ethernet, and complete the configuration of

MAC and DMA of ETH. Finally, call ConfigEthernet() in the main function to drive the network card.

Figure3 Create New Underlying Driver Files

http://www.geehy.com/

Document No.: AN1088

www.geehy.com Page 8

3.2 Add LwIP source file

In the project with Ethernet PHY driver written, create a new group lwip and add the following files into

the project without modification.

Figure 4 LWIP Source Files

3.3 Transplant header files

After LWIP source files are transplanted, our project also needs some corresponding header files to

support copying the rectification arch folder in contrib-1.4.1\ports\old\rtxc\include\arch downloaded

from LWIP website to the current project and contain it.

Figure 5 LWIP Header Files

http://www.geehy.com/

Document No.: AN1088

www.geehy.com Page 9

Because we use Keil development tools, we need to simply modify cc.h file. The modified file is shown

below on the left.

Figure 6 cc.h File

cc.h file contains processor related variable types, data structures, and related macros of byte

alignment. A series of names such as U16_F, S16_F, X16_F are used for debugging information

output format of the debugging function of LwIP.

Figure7 Add lwipopts.h File

Next, you need to configure the LwIP function options, and copy the file lwipopts.h in the path of

lwip-1.4.1\test\unit\ to the project for modification. lwipopts.h header file can clip the LwIP functions,

such as whether there is an operating system, memory space allocation, storage pool allocation, TCP

function, UDP function selection, programming interface enable, etc. If the user does not configure in

lwipopts.h file, LwIP will use default parameters of opt.h.

http://www.geehy.com/

Document No.: AN1088

www.geehy.com Page 10

3.4 Transplant network card driver files

Figure 8 Transplant Network Card Driver Files

ethernetif.c file in lwip-1.4.1 is the template of the driver of the underlying interface, which stores the

LwIP and ETH peripheral network interface functions, and will be called when the network card

receives or transmits data. We copy this module into the project and modify it according to the

implementation method of the network card used. Then the transplantation of LWIP is basically

completed.

The main functions that need to be implemented by users are low_level_init, low_level_output and

low_level_input, which are used to initialize and enable MAC and DMA, transmit data in physical layer

and receive data in physical layer respectively.

http://www.geehy.com/

Document No.: AN1088

www.geehy.com Page 11

3.5 Initialize protocol stack

The files that need to be added and modified are ready. Before using LWIP protocol stack, LWIP needs

to be initialized first.

First complete the initialization of memory management, and complete the initialization of memory

heap and memory pool through mem_init and memp_init. Then initialize the variables ipaddr, netmask

and gw through IP4_ADDR, set them to the local IP address, subnet mask and gateway address, and

then use netif_add to add the Ethernet device, and transfer the IP address, subnet mask, gateway,

and addresses of network card device initialization function and Ethernet frame receiving function into

the UserNetif variable to complete the registration of the network card. Set the network card UserNetif

void LwIP_Init(void)

{

struct ip_addr ipaddr;

struct ip_addr netmask;

 struct ip_addr gw;

 /** Initializes the dynamic memory heap */

 mem_init();

 /** Initializes the memory pools */

 memp_init();

 IP4_ADDR(&ipaddr, 192, 168, 73, 22);

 IP4_ADDR(&netmask, 255, 255 , 255, 0);

 IP4_ADDR(&gw, 192, 168, 73, 1);

 /** Config MAC Address */

 ETH_ConfigMACAddress(ETH_MAC_ADDRESS0, SetMACaddr);

 /** Add a network interface to the list of lwIP netifs */

 netif_add(&UserNetif, &ipaddr, &netmask, &gw, NULL, ðernetif_init, ðernet_input);

 /** Registers the default network interface */

 netif_set_default(&UserNetif);

 /** When the netif is fully configured this function must be called */

 netif_set_up(&UserNetif);

}

http://www.geehy.com/

Document No.: AN1088

www.geehy.com Page 12

as the default network communication device through the function netif_set_default. Finally, call

netif_set_up to start the network card to complete the initialization of LWIP. It should be noted that the

IP address must be set in the same gateway as the router. For example, the IP address of my

computer is 192.168.73.122. I need to set the gateway to 192.168.73.1, the mask to 255.255.255.0,

and the IP address to 192.168.73 xx.

3.6 Configure LwIP time base

After the initialization of the whole LWIP core, if you want the protocol stack to run normally, you also

need to configure a time base for LwIP so that the core can handle various timing events, such as TCP

timing and ARP timing tasks;

SysTick is used as the time base timer of LwIP. An interrupt is triggered every 1ms, and the global

variable ETHTimer is added by 1. LwIP can judge whether there is a timeout through the time obtained

twice, so as to handle corresponding events.

At the same time, a function is also defined in LwIP to realize the timing event sys_check_timeouts(). If

you need to use sys_check_timeouts() function, in lwipopts.h header file, set NO_SYS_NO_TIMERS

to 0 to support sys_timeout function, implement the function sys_now(), return ETHTimer in the

function to obtain the current tick value.

3.7 Acquisition of data packets

At this point, you can use the development board to obtain the network data packets. Generally, you

can use polling or interrupt processing to obtain data packets. The following gives an example of

obtaining data packets by polling in the current project, and shows the experimental phenomena of

ping instruction. By polling, you only need to use ETH_ReadRxPacketSiz periodically in the main

function to determine whether a data packet has arrived, and call the ethernetif_input receive function

when receiving a data packet.

3.8 Experimental phenomena

After compiling the project and downloading it to the development board, connect the development

board and the computer through the network cable, execute ipconfig in the command line through the

CMD console of the computer, confirm that the IP address gateway of the computer is 192.168.73.1,

and execute ping 192.168.73.22. When you see the experimental phenomena as shown in the figure

below, it can be determined that our transplantation work is over, and the network card driver and

protocol stack can work normally.

Figure 9 Experimental Phenomena

http://www.geehy.com/

Document No.: AN1088

www.geehy.com Page 13

4 Revision History

Table 1 Document Revision History

Date Version Change History

June 23, 2022 1.0 New

http://www.geehy.com/

Document No.: AN1088

www.geehy.com Page 14

Statement

This manual is formulated and published by Zhuhai Geehy Semiconductor Co., Ltd. (hereinafter referred to

as "Geehy"). The contents in this manual are protected by laws and regulations of trademark, copyright and

software copyright. Geehy reserves the right to correct and modify this manual at any time. Please read this

manual carefully before using the product. Once you use the product, it means that you (hereinafter referred to

as the "users") have known and accepted all the contents of this manual. Users shall use the product in

accordance with relevant laws and regulations and the requirements of this manual.

1. Ownership of rights

This manual can only be used in combination with chip products and software products of corresponding

models provided by Geehy. Without the prior permission of Geehy, no unit or individual may copy, transcribe,

modify, edit or disseminate all or part of the contents of this manual for any reason or in any form.

The "Geehy" or "Geehy" words or graphics with "®" or "TM" in this manual are trademarks of Geehy. Other

product or service names displayed on Geehy products are the property of their respective owners.

2. No intellectual property license

Geehy owns all rights, ownership and intellectual property rights involved in this manual.

Geehy shall not be deemed to grant the license or right of any intellectual property to users explicitly or

implicitly due to the sale and distribution of Geehy products and this manual.

If any third party’s products, services or intellectual property are involved in this manual, it shall not be

deemed that Geehy authorizes users to use the aforesaid third party’s products, services or intellectual property,

unless otherwise agreed in sales order or sales contract of Geehy.

3. Version update

Users can obtain the latest manual of the corresponding products when ordering Geehy products.

If the contents in this manual are inconsistent with Geehy products, the agreement in Geehy sales order or

sales contract shall prevail.

4. Information reliability

The relevant data in this manual are obtained from batch test by Geehy Laboratory or cooperative

third-party testing organization. However, clerical errors in correction or errors caused by differences in testing

environment may occur inevitably. Therefore, users should understand that Geehy does not bear any

responsibility for such errors that may occur in this manual. The relevant data in this manual are only used to

http://www.geehy.com/

Document No.: AN1088

www.geehy.com Page 15

guide users as performance parameter reference and do not constitute Geehy's guarantee for any product

performance.

Users shall select appropriate Geehy products according to their own needs, and effectively verify and test

the applicability of Geehy products to confirm that Geehy products meet their own needs, corresponding

standards, safety or other reliability requirements. If loses are caused to users due to the user's failure to fully

verify and test Geehy products, Geehy will not bear any responsibility.

5. Compliance requirements

Users shall abide by all applicable local laws and regulations when using this manual and the matching

Geehy products. Users shall understand that the products may be restricted by the export, re-export or other

laws of the countries of the product suppliers, Geehy, Geehy distributors and users. Users (on behalf of itself,

subsidiaries and affiliated enterprises) shall agree and promise to abide by all applicable laws and regulations

on the export and re-export of Geehy products and/or technologies and direct products.

6. Disclaimer

This manual is provided by Geehy "as is". To the extent permitted by applicable laws, Geehy does not

provide any form of express or implied warranty, including without limitation the warranty of product

merchantability and applicability of specific purposes.

Geehy will bear no responsibility for any disputes arising from the subsequent design and use of Geehy

products by users.

7. Limitation of liability

In any case, unless required by applicable laws or agreed in writing, Geehy and/or any third party providing

this manual "as is" shall not be liable for damages, including any general damages, special direct, indirect or

collateral damages arising from the use or no use of the information in this manual (including without limitation

data loss or inaccuracy, or losses suffered by users or third parties).

8. Scope of application

The information in this manual replaces the information provided in all previous versions of the manual.

© 2022 Zhuhai Geehy Semiconductor Co., Ltd. - All Rights Reserved

http://www.geehy.com/

